Non-heme iron protein: a potential target of nitric oxide in acute cardiac allograft rejection.
نویسندگان
چکیده
We examined iron nitrosylation of non-heme protein and enzymatic activity of the Fe-S cluster protein, aconitase, in acute cardiac allograft rejection. Heterotopic transplantation of donor hearts was performed in histocompatibility matched (isografts: Lewis --> Lewis) and mismatched (allografts: Wistar-Furth --> Lewis) rats. On postoperative days (POD) 4-6, Western blot analysis and immunohistochemistry revealed inducible nitric-oxide synthase (iNOS) protein in allografts but not isografts. EPR spectroscopy revealed background signals at g = 2.003 (for semiquinone) and g = 2.02 and g = 1.94 (for Fe-S cluster protein) in isografts and normal hearts. In contrast, in allografts on POD4, a new axial signal at g = 2.04 and g = 2.02 appeared that was attributed to the dinitrosyl-iron complex formed by nitrosylation of non-heme protein. Appearance of this signal occurred at or before significant nitrosylation of heme protein. Iron nitrosylation of non-heme protein was coincidental with decreases in the nonnitrosylated Fe-S cluster signal at g = 1.94. Aconitase enzyme activity was decreased to approximately 50% of that observed in isograft controls by POD4. Treatment with cyclosporine blocked the (i) elevation of plasma nitrate + nitrite, (ii) up-regulation of iNOS protein, (iii) decrease in Fe-S cluster EPR signal, (iv) formation of dinitrosyl-iron complexes, and (v) loss of aconitase enzyme activity. Formation of dinitrosyl-iron complexes and loss of aconitase activity within allografts also was inhibited by treatment of recipients with a selective iNOS inhibitor, l-N(6)-(1-iminoethyl)lysine. This report shows targeting of an important non-heme Fe-S cluster protein in acute solid organ transplant rejection.
منابع مشابه
Time course and cellular localization of inducible nitric oxide synthases expression during cardiac allograft rejection.
BACKGROUND We have demonstrated that inhibition of inducible nitric oxide synthase (NOS) ameliorated acute cardiac allograft rejection. This study determined the time course and cellular localization of inducible NOS expression during the histologic progression of unmodified acute rat cardiac allograft rejection. METHODS Tissue from syngeneic (ACI to ACI) and allogeneic (Lewis to ACI) transpl...
متن کاملMechanisms of the protective action of diethyldithiocarbamate-iron complex on acute cardiac allograft rejection.
In this study, we examined the actions of diethyldithiocarbamate-iron (DETC-Fe) complex in acute graft rejection heterotopically transplanted rat hearts. Chronic treatment with DETC-Fe inhibited the increase in plasma nitric oxide (NO) metabolites and nitrosylation of myocardial heme protein as determined by electron paramagnetic resonance (EPR) spectroscopy. Pulse injection with DETC-Fe normal...
متن کاملEPR detection of heme and nonheme iron-containing protein nitrosylation by nitric oxide during rejection of rat heart allograft.
The paramagnetic molecule nitric oxide (NO), produced from L-arginine by a specific enzyme (NO synthase), has been shown to be involved in a surprising variety of mammalian cellular responses, including the regulation of T cell immunity to alloantigens in vitro. In cytotoxic activated macrophages, NO production results in a characteristic pattern of alteration of iron-containing enzyme function...
متن کاملDonor simvastatin treatment abolishes rat cardiac allograft ischemia/reperfusion injury and chronic rejection through microvascular protection.
BACKGROUND Ischemia/reperfusion injury may have deleterious short- and long-term consequences for cardiac allografts. The underlying mechanisms involve microvascular dysfunction that may culminate in primary graft failure or untreatable chronic rejection. METHODS AND RESULTS Here, we report that rat cardiac allograft ischemia/reperfusion injury resulted in profound microvascular dysfunction t...
متن کاملVariable efficacy of N6-(1-iminoethyl)-L-lysine in acute cardiac transplant rejection.
We examined the efficacy and mechanism of action of N(6)-(1-iminoethyl)-L-lysine (L-NIL), a highly selective inhibitor of inducible nitric oxide (NO) synthase (iNOS), on acute cardiac transplant rejection. L-NIL produced a concentration-dependent attenuation of plasma NO by-products and a decrease in nitrosylation of heme protein without altering protein levels of iNOS. At postoperative day 4, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 6 شماره
صفحات -
تاریخ انتشار 2003